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Abstract

Vieira Bela, Renan; Pesco, Sinésio (Advisor); Borges Barreto
Jr., Abelardo (Co-Advisor). Modeling Falloff Tests in
Multilayered Reservoirs. Rio de Janeiro, 2018. 75p.
Dissertação de mestrado – Departamento de Matemática,
Pontifícia Universidade Católica do Rio de Janeiro.

The injectivity test is a procedure used to collect information over
a petroleum reservoir by injecting a fluid (commonly, water) into the
reservoir. According to the pressure response measured during the test,
several reservoir features might be inferred, such as equivalent permeability,
outer boundary condition and recoverable oil volume. Injectivity test
consists of two different stages: the flow period and the falloff period.
During the former, occurs the water injection into the rock formation. The
latter stage is marked by the well shut-in and, hence, a zero-flow pulse
propagates along the reservoir. Over the past years, accomplishments have
been made regarding the pressure behavior in multilayer reservoirs under
single-phase flow and injectivity tests in single-layer reservoirs. However,
an analytical solution for pressure behavior in multilayer reservoirs is well
known just during the flow period. Therefore, this work attempts to develop
an analytical model for the falloff period in multilayer reservoirs. The
accuracy of the proposed solution was assessed by comparison with a
finite difference flow simulator. Results showed a close agreement between
the analytical model and numerical data. Moreover, falloff data obtained
by the analytical solution was used to estimate the reservoir equivalent
permeability. Calculated values presented a satisfactory accuracy for all
cases.

Keywords
Injectivity Test; Multilayer Reservoir; Commingled System; Falloff

Period; Analytical Model.
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Resumo

Vieira Bela, Renan; Pesco, Sinésio; Borges Barreto Jr., Abelardo.
Modelagem de Testes de Injetividade e Falloff em
Reservatórios Multicamadas. Rio de Janeiro, 2018. 75p.
Dissertação de Mestrado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

O teste de injetividade é um procedimento que tem por objetivo
extrair informações sobre um reservatório de petróleo a partir da injeção
de um fluido (usualmente, água) no reservatório. Com base na resposta
de pressão medida durante o tempo de teste, pode-se inferir uma série de
características acerca do reservatório, tais como permeabilidade equivalente,
condição de fronteira do reservatório e volume de óleo recuperável. O teste de
injetividade é dividido em dois períodos: um de fluxo, durante o qual ocorre
a injeção de água no reservatório; e o segundo de falloff, no qual o poço é
fechado e o fluxo ao longo do reservatório cessa. Os modelos analíticos hoje
existentes são capazes de descrever bem tanto o período de injeção quanto
o de falloff apenas para reservatórios com uma camada. Nos reservatórios
com múltiplas camadas, somente o período de injeção tem uma formulação
conhecida. Portanto, esse trabalho tem como objetivo propor uma solução
analítica para o período de falloff em reservatórios com múltiplas camadas.
A precisão da solução proposta foi avaliada a partir da comparação com
um simulador numérico de fluxo para uma série de casos. Os resultados
mostraram boa concordância entre os dados numéricos e o modelo proposto.
Além disso, os dados do falloff obtidos com a solução analítica foram
usados para estimar a permeabilidade equivalente do reservatório. Os valores
encontrados apresentaram precisão satisfatória para todos os casos.

Palavras-chave
Teste de Injetividade; Modelo Analítico; Período de Falloff;

Reservatórios Multicamadas.
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1
Introduction

Whenever a petroleum reservoir is discovered, many of its features (such
as permeability and extension) are not known with a high level of certainty. In
order to determine such properties and, hence, the economical viability of the
reservoir, there exists two main procedures. During a conventional production
test, the wellbore establishes a pressure drop that results in oil flow from the
reservoir to the surface. Although widely used, this test yields an oil volume
that, according to brazilian laws, may not be sold in market and must be burn,
raising its environmental impact.

For this reason, injectivity tests have been increasingly applied. As the
production test, this procedure aims to evaluate, through the analysis of
measured pressure data, reservoir productivity parameters, its extension and
boundary conditions.

A typical injectivity test consists of two stages: the injection period and
the falloff period. During the former, a fluid (usually water) is injected into the
rock formation. Fluid injection will induce the displacement of the reservoir
existing oil, causing a pressure rise. As the flooded area grows, a high water
saturation region is formed around the wellbore. The latter stage is marked by
the well shut-in and, thus, a zero-flow pulse propagates along the reservoir. As
a result, measured pressure decreases.

Parameter estimation relies on the collected pressure data interpretation,
both in a production or an injectivity test. According to the pressure profile and
its derivative with respect to the logarithm of time, it is possible to estimate
the reservoir equivalent permeability. The outer boundary condition is easily
determined through characteristic signatures in the derivative. The existence
of near-wellbore formation damage is also identifiable.

Past studies have formulated analytical models for both injection and
falloff periods in single-layer reservoirs. However, injectivity test is applicable
to reservoirs with more than one layer as well.

In multilayer reservoirs, layer flow-rate is not necessarily constant, since
layers can communicate through the wellbore. Total flow-rate, on the other
hand, remains constant, due to mass conservation. Furthermore, in some cases
there might occur vertical flow between adjacent layers, owing to a nonzero

DBD
PUC-Rio - Certificação Digital Nº 1621743/CA



Chapter 1. Introduction 13

vertical permeability. This phenomena is called formation crossflow.
Existing multilayer analytical models are able to fully describe pressure

profile during production tests. Semilog graph techniques allow even the
estimation of individual layer properties, provided the layer flow-rate history
is known. For injectivity tests, however, a formulation only for the injection
period is well defined. Falloff pressure behavior, in its turn, remains unknown.

In this context, the main purpose of this work is to develop an
analytical model for falloff period in multilayer reservoirs. The suggested
formulation was developed by combining the solution for injection period in
multilayer reservoirs with the existing model for falloff period in single-layer
reservoirs. Results were assessed through comparison with a finite-differences
numerical simulator for a set of cases. Using conventional semilog techniques,
the generated falloff data was used to estimate the reservoir equivalent
permeability.

Following this introduction, chapter 2 shows an overview on the work
that was previously done, regarding single-phase flow in multilayer systems
and two-phase flow in single-layer reservoirs. The chapter ends by introducing
the analytical model for injection period in multilayer reservoirs.

Chapter 3 describes the known formulation for injection period, both in
single and multilayer systems. Then, in chapter 4, the existing model for falloff
period in single-layer reservoirs is presented. In the same chapter, the proposed
formulation for falloff period in the multilayer case is developed.

The results achieved using the suggested model and the numerical
simulator are shown in chapter 5. A comment on those results is made,
and calculated equivalent permeabilities are also displayed. Lastly, chapter 6
consists of the conclusions that follow from the obtained results and provides
suggestions for future works.
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2
Previous Achievements

Historically, transient pressure behavior in petroleum reservoirs has been
modeled under two distinct lines of work. On one hand, analytical models for
pressure response in multilayer reservoirs under single-phase flow have been
developed. In parallel, the study on injectivity tests in single-layer reservoirs
has been conducted.

Thus, this chapter will present a recap over the previous works conducted
both on single-phase flow in multilayer systems and on two-phase flow in
single-layer reservoirs. At the end, a comment is made about injectivity tests
in multilayer systems.

2.1
Modeling Single-Phase Flow In Multilayer Reservoirs

Single-phase flow in multilayer reservoirs has been studied in the
context of production tests, that is, when oil is removed from the reservoir.
Nevertheless, the same equations also describe the pressure behavior during
a theoretical injectivity test in which the injected fluid presents the same
properties as the reservoir existing oil. Only adjustment required concerns
the flow direction, that must occur from the wellbore to the reservoir, unlike
a production test.

Lefkovits et al. (4) provided an analytical model for production tests in
reservoirs with an arbitrary number of layers and no vertical flow between
layers other than through the wellbore. Such reservoirs are denoted as
commingled systems. Their model considers that layer properties such as
thickness, permeability, formation damage and porosity may vary from one
layer to another. Their results have been served as basis for many studies
further developed.

Cobb et al. (5) conducted a comparison between three techniques for
buildup data analysis in multilayer commingled reservoirs with equal layer
thickness: Muskat, Miller-Dyes-Hutchinson and Horner methods. Buildup is
the stage of a production test after the well is shut, equivalent to falloff in
an injectivity test. They have shown that all three mentioned methods might
be used to estimate the reservoir flow capacity, that is, the product between
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Chapter 2. Previous Achievements 15

total thickness and equivalent permeability. Nevertheless, conventional semilog
techniques were proven incapable of determining individual layer thickness or
permeability.

Single-phase flow in reservoirs with two layers of distinct thickness
was studied by Raghavan et al. (7). A means for obtaining individual layer
permeability was proposed, assuming the thickness ratio is known. It was also
shown that, among the techniques discussed by Cobb et al., Horner method is
superior, as it allows the estimation of the reservoir average pressure and the
ratio between layer permeabilities.

Gao (10) developed approximated solutions for pressure and flow-rate in
each layer. The suggested formulation is able to provide estimatives for flow
capacity in each layer. In the same work, there is also a discussion over the
formation crossflow behavior and its effects.

A procedure for individual layer properties evaluation was proposed by
Ehlig-Economides and Joseph (11). The suggested calculation is based on
the analysis of pressure and layer flow-rate data. Permeability and formation
damage for each layer may be determined through their method. In reservoirs
with formation crossflow, even the vertical permeability between layers may
be estimated.

Raghavan (14) conducted a review over the previous works about
multilayer reservoirs. He described how differences in layer properties may
lead to a pressure response distinct than the one of a single-layer equivalent
reservoir. The influence of formation damage and crossflow were also reported.
Furthermore, a technique to obtain individual layer properties from pressure
and layer flow-rate data analysis was discussed.

Spath et al. (18) took advantage of the fact that layer flow-rates
are decoupled when there is no formation crossflow and proposed a simple
algorithm to compute wellbore pressure in commingled reservoirs. They
proposed that layer flow-rate may assumed to be constant and determined
using Duhamel’s theorem. Thus, the single-layer solution may be used to
calculate wellbore pressure in commingled systems.

2.2
Modeling Injectivity Tests In Single-Layer Reservoirs

The study on injectivity tests started to drain greater attention during
the 80’s. Abbaszadeh and Kamal (12) formulated an interpretation method for
injectivity tests in single-layer reservoirs. Their solution accounts for relative
permeability effects, formation damage and wellbore storage (the flow-rate
difference between surface and reservoir due to fluid decompression).
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Chapter 2. Previous Achievements 16

Abbaszadeh and Kamal proposed the waterfront saturation profile
depicted by Buckley-Leverett (1) may be discretized into a series of banks.
Thus, pressure behavior during an injectivity test would be equivalent to the
one of a composite reservoir, formed by several distinct banks. They suggested
that, during falloff, waterfront remains stationary, and proved the validity of
such hypothesis under certain conditions. Thereby, type-curves for pressure
and pressure derivative were developed.

Bratvold and Horne (16) evaluated the influence of temperature on
fluid mobility and on saturation gradients. Their formulation was also based
on the discretization of the saturation profile foreseen by Buckley-Leverett
theory to obtain the pressure response. The model developed aims to generate
type-curves for both injection and falloff, for the purpose of estimating reservoir
properties such as storage effect, formation damage and the extension of the
flooded region.

Oliveira and Serra (17) proposed a technique to estimate the relative
permeability curves from falloff pressure data. Such calculation was made
under the assumption that the relative permeability curves are approximated
by polynomials whose coefficients are determined from the apparent skin
foreseen by Bratvold and Horne’s solution.

A general theory for radially heterogeneous reservoirs was developed by
Thompson and Reynolds (19), either for single-phase or multiphase flow. They
showed that pressure derivative may be understood as a weighted average
of the permeabilities along the reservoir. The weighting factor is a function
of flow-rate and mobility gradients. Therefore, regions where flow-rate and
mobility changes are higher will be more relevant in the pressure derivative
calculation. They stated that, in radially heterogeneous reservoirs, pressure
data during the injection period show little resemblance with pressure data
during falloff.

In a subsequent work, Banerjee et al. (20) modeled pressure behavior
during injectivity tests in radially heterogeneous reservoirs. The same
suggested formulation may be applied to homogeneous reservoirs as well. In
such cases, a computation for the mechanical formation damage was developed.

A formulation for the injection period during injectivity tests in
horizontal wells was presented by Peres and Reynolds (21). They considered the
well is placed such that distance to the reservoir top and bottom boundaries
are equal, and applied Thompson and Reynolds’ steady-state theory. Thus,
analytical expressions (that account for formation damage) for two of the three
characteristic flow periods of a horizontal well testing were proposed - the third
period occurs only in finite reservoirs, and such cases were not studied in their
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Chapter 2. Previous Achievements 17

work.
The general theory for pressure behavior under water injection was

presented by Peres et al. (22). They developed an analytical solution for
the injection period and showed that their model reduces to the formulation
proposed by previous authors, provided that the correct assumptions are made.
Their solution is also capable of describing restricted entry wells and horizontal
wells positioned at any point of the reservoir.

The falloff solution was reached by Peres et al. (24) following their own
work (22). The superposition principle was used to describe the flow-rate
history during falloff as the sum two flow-rates with different sign, but being
applied at the same point of the reservoir.

2.3
Modeling Injectivity Tests In Multilayer Reservoirs

To the author’s best knowledge, the first work regarding injectivity tests
in multilayer reservoirs was presented by Barreto et al. (25). They applied
Darcy’s law to one given layer, so that an expression for the pressure change
in this layer during the injection period is obtained. Thereby, layer flow-rate
may be written as a function of that individual layer pressure change. A means
for calculating wellbore pressure, then, is achieved by the sum of all layer
flow-rates. Their solution for the injection period assumes no crossflow and
radially infinite reservoir.

As disclosed in this overview, existing analytical models lack to describe
falloff period in multilayer systems. Using the formulation developed by
Barreto et al. (25) as basis, this work will attempt to extend the analytical
model for falloff period in single-layer reservoirs (24) to multilayer systems as
well.
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3
Pressure Response During Injection

In this chapter, the formulation for single-layer reservoirs during the
injection period, developed by Banerjee et al. (20) and Peres et al. (22), will
be presented. This model will be extended to multilayer systems, as proposed
by Barreto et al. (25). All calculations assume that a consistent unit set is
used. The model developed considers the reservoir is subject to the following
simplifying hypothesis:

– Reservoir in equilibrium at the instant t = 0;

– Each layer presents constant thickness hj;

– Homogeneous and isotropic reservoir, with infinite extension;

– Water and oil are assumed to be immiscible, slightly compressible fluids
with constant viscosity µ;

– Flow is isothermal;

– Rock formation presents a low and constant compressibility;

– Wellbore fully penetrates all layers and injects at constant flow-rate qinj;

– Gravitational and capillary forces are neglected;

– Initial pressure is the same for all layers;

– There is no wellbore storage;

– It is considered a commingled system, i.e., communication between layers
happens only through the wellbore.

Reservoir may be composed by an arbitrary number of layers, which
may present distinct formation damage zones, or even no formation damage.
Oil viscosity, relative permeability curves and rock porosity may also vary
according to the layer. However, for a matter of convenience, these properties
were assumed to be the same in all layers during the calculations. Figure 3.1
shows the considered reservoir model. In this example, each layer is identified
by the index 1, 2 or 3; qj, kj and hj stand for the individual flow-rate,
permeability and thickness in layer j, respectively. Subscript skin denotes
the properties of the damaged zone (radius and permeability), which is only
observed in the third layer.
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Chapter 3. Pressure Response During Injection 19

Figure 3.1: Reservoir Model

During the flow period, injected water displaces the reservoir oil, creating
a high water saturation region around the wellbore. Beyond this region, oil
flow occurs at its initial saturation. The idea is to split the wellbottom hole
pressure in two components: one that encompasses the two-phase flow region
and another that describes oil flow beyond the waterfront.

3.1
Pressure Behavior In Single-Layer Reservoirs - Injection Period

The starting point in order to compute the pressure variation in the
reservoir during an injectivity test is Darcy’s law (20, 21, 25), that models flow
through porous media. It states that flow-rate of a given fluid is calculated as:

qf (r, t) = −Akkrf
µf

∂P

∂r
, (3-1)

where the f index stands for the considered phase (water or oil), A is the
cross-sectional area, k represents the media absolute permeability, µf stands
for the fluid viscosity and ∂P

∂r
denotes the pressure derivative with respect to

the radius.
Moreover, krf is the porous media relative permeability with respect to

the phase considered. In other words, it is the percentage of the rock formation
absolute permeability that is effectively felt by a fluid during its displacement.
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Chapter 3. Pressure Response During Injection 20

For a cylindrical geometry, Darcy’s law may be rewritten as:

qf (r, t) = 2πhkkrf
µf

(
r
∂P

∂r

)
, (3-2)

where h is the layer thickness.
Furthermore, due to the system mass conservation, it is valid to say

that, inside the reservoir, total flow-rate is given by the sum of oil and water
flow-rates:

q(r, t) = qo(r, t) + qw(r, t) (3-3)
Which implies, by equations (3-2) and (3-3), that:

q(r, t) = 2πhk
(
kro
µo

+ krw
µw

)
r
∂P

∂r
(3-4)

At this point, it is convenient to introduce another fluid property. The
mobility of a phase measures the ability of this phase to flow through the porous
media. It is defined as the ratio between the phase’s relative permeability and
its viscosity (19):

λf (Sw) = krf (Sw)
µf

, (3-5)

where Sw stands for water saturation.
Relative permeability in the water-oil system is affected by water

saturation along the porous media, since a higher water saturation impairs
oil flow. Analogously, higher oil saturation impairs water displacement. Thus,
relative permeability is a function of water saturation and, hence, so does the
mobility.

During an injectivity test, a region with high water saturation is formed
around the wellbore. At sufficiently large radius, water and oil remain at their
connate saturations. These two zones are conected by a transition region, whose
shape is defined by Buckley-Leverett theory, as shown in appendix A.

As injection goes on, the flooded area grows, and so does the high water
saturation zone. Hence, water and oil saturation are functions of time and
radius. As an immediate consequence, relative permeability and mobility will
also depend on time and radius. Total mobility of the system in study is given
by:

λT = λo(Sw) + λw(Sw) = λo(r, t) + λw(r, t) = λT (r, t) (3-6)
Thereby, Darcy’s law may be rearranged for the purpose of obtaining an

expression for pressure change at any point of the reservoir as a function of
the radius:

∂P

∂r
= q(r, t)

2πkh

( 1
λo + λw

) 1
r

= q(r, t)
2πkh

1
λT (r, t)

1
r

(3-7)
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Thus, integrating both sides over the radius from the wellbore onwards:
∞∫
rw

∂P

∂r
dr =

∞∫
rw

q(r, t)
2πkh

1
λT (r, t)

dr

r
, (3-8)

where the wellbore radius is denoted by rw.
The left side of equation (3-8) is evaluated by the Fundamental Theorem

of Calculus, yielding:
∞∫
rw

dP

dr
dr = lim

r→∞
P (r, t)− P (rw, t) = lim

r→∞
P (r, t)− Pwf (t), (3-9)

where Pwf stands for the wellbottom hole pressure, that is, the pressure
measured at the wellbore.

At a sufficiently large radius, the wellbore presence is no longer felt. Thus:

lim
r→∞

P (r, t) = Pi, (3-10)
where Pi stands for the reservoir initial pressure.

On the right side of equation (3-8), only total mobility and total flow-rate
are functions of the radius, since the porous media is assumed isotropic and
homogeneous. Therefore, it is possible to obtain, for a given instant of time, a
function relating pressure and radius (19):

Pi − Pwf (t) = ∆Pwf (t) = 1
2πkh

∞∫
rw

q(r, t)
λT (r, t)

dr

r
(3-11)

Beyond the waterfront, only oil flows. On the other hand, behind the
waterfront, a two-phase flow occurs (12, 16). Hence, it is logical to split the
right side of equation (3-11) in two integrals, one whose integration limits go
from the wellbore to the waterfront and another whose limits go from the
waterfront onwards:

∆Pwf (t) = 1
2πkh

 rF (t)∫
rw

q(r, t)
λT (r, t)

dr

r
+

∞∫
rF (t)

q̂o(r, t)
λ̂o

dr

r

 (3-12)

In the second integral of equation (3-12), total flow-rate was replaced
by oil flow-rate at irreducible water saturation (q̂o), and total mobility was
replaced by the oil mobility at irreducible water saturation (λ̂o). Those
substitutions are possible due to the fact that, according to the reservoir model,
oil is the only fluid flowing beyond the waterfront (12, 16). Furthermore, oil
and water remain at the reservoir connate saturations beyond the waterfront,
since injected water has not yet reached this region. Thus, oil flow-rate should
be evaluated at its endpoint saturation. The waterfront radius, denoted by
rF (t), is estimated by Buckley-Leverett theory, as discussed in appendix A.2.

Adding and subtracting the term
rF (t)∫
rw

q(r,t)
λ̂o

dr
r
in equation (3-12):

DBD
PUC-Rio - Certificação Digital Nº 1621743/CA



Chapter 3. Pressure Response During Injection 22

∆Pwf (t) = 1
2πkh

rF (t)∫
rw

(
q(r, t)
λT (r, t) −

q̂o(r, t)
λ̂o

)
dr

r
+ 1

2πkh

∞∫
rw

q̂o(r, t)
λ̂o

dr

r
(3-13)

During the injection period, a non-zero flow-rate profile develops
throughout the reservoir. Since flow-rate at the wellbore is constant, because
injection flow-rate is constant by hypothesis, the region closest to the wellbore
will also present constant flow-rate. At radii far from the wellbore, its presence
is not felt and, hence, flow-rate at such radii will be zero. As the injection goes
on, the constant non-zero flow-rate region expands.

It is known that the steady state region expands faster than the
waterfront (19). Hence, both total and oil flow-rate behind the waterfront
are constant and equal to the flow-rate at the interface between wellbore and
reservoir.

This flow-rate is obtained through the adjustment of the surface injection
flow-rate (qinj) to reservoir conditions, and is given by the water formation
volume factor Bw. Such adjustment is required since pressure and temperature
conditions at the surface are different than the ones at the reservoir. Thereby,
behind the waterfront, the following relation is valid:

q(r, t) = q̂o(r, t) = qinjBw (3-14)
Thus, equation (3-13) may be rewritten as:

∆Pwf (t) = qinjBw

2πkh

rF (t)∫
rw

(
1

λT (r, t) −
1
λ̂o

)
dr

r︸ ︷︷ ︸
∆Pλ(t)

+ 1
2πkh

∞∫
rw

q̂o(r, t)
λ̂o

dr

r︸ ︷︷ ︸
∆Po(t)

(3-15)

Equation (3-15) shows that the pressure variation at the wellbore may be
understood as the sum of two parcels: one related to the single-phase oil flow
(∆Po), and another owing to the mobility differences between oil and water
(∆Pλ):

∆Pwf (t) = ∆Pλ(t) + ∆Po(t), (3-16)
where:

∆Pλ(t) = qinjBw

2πkh

rF (t)∫
rw

(
1

λT (r, t) −
1
λ̂o

)
dr

r
(3-17)

and

∆Po(t) = 1
2πkh

∞∫
rw

q̂o(r, t)
λ̂o

dr

r
(3-18)

DBD
PUC-Rio - Certificação Digital Nº 1621743/CA



Chapter 3. Pressure Response During Injection 23

A means for computing the term ∆Po is shown in appendix B. The result
from equations (3-16) to (3-18) fully describes the pressure behavior during the
injection period of an injectivity test in a single-layer reservoir.

3.2
Pressure Behavior In Multilayer Reservoirs - Injection Period

Darcy’s law provides the flow-rate of a given phase along the porous
media. This individual fluid displacement is decoupled with respect to each
layer (18), assuming the oil remains immobile during water flow, and vice
versa. Thus, for injectivity tests in multilayer reservoirs, Darcy’s law may be
applied in one given layer j, yielding:

qfj(r, t) = −
Akkrfj
µfj

∂Pj
∂r

(3-19)

Using an argument analogous to the one explained in section 3.1, an
expression similar to equation (3-15) is obtained, modeling the pressure
behavior in layer j:

∆Pwfj(t) = qj(r = rw, t)Bw

2πkjhj

rFj (t)∫
rw

 1
λTj(r, t)

− 1
λ̂oj

 dr

r
+ 1

2πkjhj

∞∫
rw

q̂oj(r, t)
λ̂oj

dr

r︸ ︷︷ ︸
∆Poj (t)

(3-20)
Under the assumptions made, fluids and relative permeability curves are

the same in all layers. For this reason, all mobilities will be represented without
any index from now on. Nevertheless, the proposed model is easily adapted to
reservoirs where distinct layers present distinct relative permeability curves.

In appendix C, it is shown that the term ∆Poj(t) is, in fact, the same for
all layers and how it is computed. From now on, this term will be referred to as
∆Po(t). Besides that, the term multiplying the layer flow-rate will be denoted
as a weight variable Aj(t) (25):

Aj(t) = Bw

2πkjhj

rFj (t)∫
rw

(
1

λT (r, t) −
1
λ̂o

)
dr

r
(3-21)

Moreover, under the assumptions made, pressure change is the same for
all layers. Thus, pressure measured at the well bottom is equal to the pressure
at any individual layer, except for the hydrostatic effect:

∆Pwf1(t) = ∆Pwf2(t) = ... = ∆Pwfn(t) = ∆Pwf (t) (3-22)
Hence:

∆Pwf (t) = qj(r = rw, t)Aj(t) + ∆Po(t) (3-23)
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Thus, flow-rate in layer j is given by:

qj(r = rw, t) = ∆Pwf (t)−∆Po(t)
Aj(t)

(3-24)

It is important to notice that layer flow-rate may change in time
according to equation (3-24), although reservoir model assumes flow-rate
remains constant at the wellbore. In fact, as there is no formation crossflow,
the injected flow-rate will remain constant, and equal to the sum of flow-rates
for all layers:

qinj =
n∑
j=1

qj(r = rw, t) =
n∑
j=1

∆Pwf (t)−∆Po(t)
Aj(t)

(3-25)

Therefore:

qinj = (∆Pwf (t)−∆Po(t))
n∑
j=1

Aj(t)−1 (3-26)

Then, it is possible to express the wellbore pressure in a way similar to
expression (3-16):

∆Pwf (t) = ∆Po(t) + qinj
n∑
j=1

Aj(t)−1

︸ ︷︷ ︸
∆Pλ(t)

(3-27)

Thereby formulation for the injection period in a multilayer reservoir (25)
is complete. For n = 1, equation (3-27) reduces to equation (3-15), assuring
the formulation is valid for reservoirs with any number of layers.
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4
Pressure Response During Falloff

During falloff, pressure variation is calculated in a slightly different way
than during the flow period:

∆Pws(∆t) = ∆Pwf (tp)−∆Pwf (tp + ∆t), (4-1)
where the subscript s denotes the falloff period and tp stands for total injection
time.

As defined in equation (3-16), pressure response during the injection
period may be evaluated as the sum of two terms, one related to single-phase oil
displacement and another that encompasses the mobility differences between
water and oil. The goal is to apply the same idea during falloff and write an
expression such as:

∆Pws = ∆Pos + ∆Pλs (4-2)
The term ∆Pos is well known, and is computed by the superposition

principle (see appendix D). The term ∆Pλs, on the other hand, was only well
defined for single-layer reservoirs so far (19, 20), to the best of the author’s
knowledge. This work attempts to develop an expression that enables the
calculation of ∆Pλs during the falloff period even in multilayer reservoirs.

First, a means for evaluating ∆Pλs in a single layer reservoir will be
presented. Then, the resulting expression will be extended to a n-layer system.
Same hypothesis made regarding the reservoir model used during the injection
period are once again assumed during falloff.

4.1
Pressure Behavior In Single-Layer Reservoirs - Falloff Period

During falloff, a zero-rate pulse propagates throughout the reservoir.
This means the steady state region formed during injection will be gradually
replaced by a zero-rate zone. Figure 4.1 shows how the flow-rate behaves
through the reservoir at the injection time tp and at two later instants of
time.

Due to modeling for the injection period, it is valid to state that
waterfront is always within the steady-state region (19, 20). Applying Darcy’s
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law in a single layer reservoir, equation (3-11) is rewritten for the falloff period
as:

∆Pws(∆t) = 1
2πkh

∞∫
rw

qs(r,∆t)
λT (r,∆t)

dr

r
, (4-3)

where qs stands for the total flow-rate at the radius considered at any time
after the well is shut and ∆Pws is defined as in equation (4-1).

Figure 4.1: Flow-Rate Profile Throughout The Reservoir In Three Instants Of
Time

It is known that the mobility profile remains practically constant during
falloff (12, 16). This hypothesis, proved by empirical data, plays a crucial role
to the computation of ∆Pλs. If the waterfront were transient, then flow-rate
throughout the reservoir would also be transient, which would imply the
pressure behavior could only be solved numerically.

Thus, total mobility in equation (4-3) depends only on the radius and
the injection time tp:

∆Pws(∆t) = 1
2πkh

∞∫
rw

qs(r,∆t)
λT (r, tp)

dr

r
(4-4)

By the same argument from section 3.2, behind the waterfront, water and
oil are present in total flow-rate. Beyond the waterfront, total flow-rate consists
only of oil flow-rate (q̂os), and total mobility in this region is the oil endpoint
mobility (λ̂o). Then, it is logical to split the integral in equation (4-4) in two
different regions, the first whose limits go from the wellbore to the waterfront
and the second whose limits go from the waterfront onwards:

∆Pws(∆t) = 1
2πkh

rF (tp)∫
rw

qs(r,∆t)
λT (r, tp)

dr

r
+ 1

2πkh

∞∫
rF (tp)

q̂os(r,∆t)
λ̂o

dr

r
, (4-5)
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where the waterfront radius at the injection time (t = tp) is, once again,
determined according to Buckley-Leverett theory (see appendix A.2). Adding

and subtracting the term
rF (tp)∫
rw

q̂os
λ̂o

dr
r
on the right side of equation (4-5):

∆Pws(∆t) = 1
2πkh

rF (tp)∫
rw

(
qs

λT (r, tp)
− q̂os

λ̂o

)
dr

r︸ ︷︷ ︸
∆Pλs(∆t)

+ 1
2πkh

∞∫
rw

q̂os

λ̂o

dr

r︸ ︷︷ ︸
∆Pos(∆t)

(4-6)

Equation (4-6), proposed by Peres et al. (24), shows that pressure
behavior during falloff may also be evaluated as the sum of one term related
to the oil displacement and another that encompasses the mobility differences
between the fluids. The single-phase contribution ∆Pos(∆t) is evaluated as
shown in appendix D.

The remaining question is how to estimate total flow-rate behind the
waterfront. Two immediate rough approximations come from considering that
total flow-rate is equal either to water or to oil flow-rate, calculated at their
respective endpoint saturations:

qs(r,∆t) = q̂os(r,∆t) (4-7)
Or:

qs(r,∆t) = q̂ws(r,∆t) (4-8)
One slightly more accurate approximation is to take an average between

these two approximations, weighted by the water mobility at residual oil
saturation and the oil mobility at irreducible water saturation:

qs(r,∆t) = λ̂oq̂os(r,∆t) + λ̂wq̂ws(r,∆t)
λ̂o + λ̂w

(4-9)

Approximation (4-9) is improved by taking in account the mobility profile
along the flooded area:

qs(r,∆t) = λo(r)q̂os(r,∆t) + λw(r)q̂ws(r,∆t)
λo(r) + λw(r) (4-10)

Finally, the most realistic way to determine total flow-rate would be to
consider that even total compressibility (ct) varies with the radius:

qs(r,∆t) = q̂λs(r,∆t, λT (r, tp), ct(r, tp)) (4-11)
An estimation for water and oil flow-rates may be obtained using the

source line approximation.
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4.1.1
Calculating The Flow-Rate Of A Fluid Using The Source Line
Approximation

The comprehension of the procedure described in section 4.1 shows that
an essential step consists of determining flow-rate at any point along the
reservoir. Thus, equation (4-6) may be applied to compute the pressure change
during falloff. Flow-rate at given time and radius is related to the pressure
change according Darcy’s law:

qD(r,∆t) = rD
∂PD(r,∆t)

∂rD
, (4-12)

where PD, tD and rD are the dimensionless flow-rate, pressure change, and
radius, defined as:

qD = q

qinj
; PD = khλ̂f∆P

qinjBf

; rD = r

rw
, (4-13)

where the subscript f indicates the flowing phase. Therefore, flow-rate may be
immediately obtained once the pressure change is well defined, for example,
like in equation (4-6). However, under the assumptions made, the source line
approximation to compute the dimensionless pressure provides a quite accurate
and much simpler estimate for the flow-rate. This model foresees that pressure
change behaves as follows:

PD(rD, tD) = 1
2

∞∫
x

exp(−u)
u

du; x = r2
D

4tD
, (4-14)

where tD is the dimensionless time, which is computed as follows:

tD = λ̂fkt

φctr2
w

(4-15)

In equation (4-15), φ denotes the formation porosity and ct stands for
total compressibility.

The derivative of dimensionless pressure with respect to dimensionless
radius is determined using Leibnitz’s rule for differentiation under integral
sign:

∂PD
∂rD

= − 1
rD
exp

(
−r2

D

4tD

)
(4-16)

Thus, dimensionless flow-rate may be calculated through equations (4-12)
and (4-16):

qD = exp

(
−r2

D

4tD

)
(4-17)

During falloff, pressure change is computed by applying the superposition
principle, as depicted in appendix D. Then, total flow-rate should be evaluated
as follows:
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qDs = rD
∂PDs(r,∆t)

∂rD
= rD

(
∂PD(r, tp + ∆t)

∂rD
− ∂PD(r,∆t)

∂rD

)
(4-18)

Hence:

qDs =
[
exp

(
− r2

D

4tD

)
− exp

(
− r2

D

4∆tD

)]
(4-19)

Oil flow-rate at a given radius is evaluated by applying equation (4-19)
and using the oil properties to compute the dimensionless parameters. On the
other hand, water flow-rate is calculated using the water properties to compute
the dimensionless variables.

4.2
Pressure Behavior In Multilayer Reservoirs - Falloff Period

Now that the previously known analytical models are well understood,
the same technique used by Barreto et al. (25) to develop their multilayer
injection solution will be applied in order to reach a similar expression that
depicts pressure behavior during falloff in multilayer reservoirs. Finally, the
adjustments required when there is formation damage will be studied.

In a multilayer reservoir, the same argument depicted in section 4.1 shows
that pressure change in one arbitrary layer j is given by an expression similar
to equation (4-6):

∆Pwsj(∆t) = ∆Posj(∆t) + 1
2πkjhj

rFj (tp)∫
rw

(
qsj(r,∆t)
λT (r, tp)

−
q̂osj(r,∆t)

λ̂o

)
dr

r
(4-20)

By hypothesis, there is no formation crossflow and pressure is the same in
all layers. This means that, after the well is shut, the system is in equilibrium
and there is no flow between layers, neither through the vertical boundaries
between adjacent layers nor through the wellbore. This assumption is not only
crucial to the development of the falloff formulation, but also significantly
strong. Assuming that there is no flow between layers means, in other words,
to state that vertical flow between layers either does not occur, or it is so small
compared to the horizontal flow along the reservoir, that it may be neglected.
This might not be true during falloff if layer properties are remarkably different
(14).

From the negligible vertical flow hypothesis, follows that the zero-rate
pulse propagates equally along all layers during falloff. Then, total and oil
flow-rate may be expressed as functions of layer flow-rate fraction, which is
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the ratio between the flow-rate in a given layer j and the sum of flow-rates in
all layers, both evaluated at one given radius and one given instant of time:

qDj(r, t) = qj(r, t)
qinj

(4-21)

To reach the expression for pressure change during falloff, flow-rate
fraction in layer j is assumed to remain constant within the flooded region
after the well is shut, and equal to the flow-rate fraction at t = tp. Then, total
and oil flow-rates in layer j may be expressed as:

qsj(r,∆t) = qDpjqs(r,∆t); qosj(r,∆t) = qDpjqos(r,∆t), if r < rFj(tp),
(4-22)

where qs and qos are computed as described in section 4.1.1; qDpj is the layer
flow-rate fraction just before shut-in, defined as:

qDpj = qj(t = tp)
qinj

(4-23)

Thus, equation (4-20) may be rewritten as:

∆Pwsj(∆t) = ∆Posj(∆t) + 1
2πkjhj

rFj (tp)∫
rwj

qDpj

(
qs(r,∆t)
λT (r, tp)

− qos(r,∆t)
λ̂o

)
dr

r

(4-24)
Since qDpj is invariant with respect to radius, it may be written out of

the integral:

∆Pwsj(∆t) = ∆Posj(∆t) +
qDpj

2πkjhj

rFj (tp)∫
rwj

(
qs(r,∆t)
λT (r, tp)

− qos(r,∆t)
λ̂o

)
dr

r
(4-25)

The considered reservoir model states that pressure change is the same
for all layers. So, once again, the pressure measured at the well bottom is equal
to the pressure at any individual layer, apart from the hydrostatic effect:

∆Pws1(∆t) = ∆Pws2(∆t) = ... = ∆Pwsn(∆t) = ∆Pws(∆t) (4-26)

The single-phase contribution is also the same for every layers, as shown
in appendices C and D. Thus:

∆Pos1(∆t) = ∆Pos2(∆t) = ... = ∆Posn(∆t) = ∆Pos(∆t) (4-27)

Which means:
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∆Pws(∆t)−∆Pos(∆t) =
qDpj

2πkjhj

rFj (tp)∫
rwj

(
qs(r,∆t)
λT (r, tp)

− qos(r,∆t)
λ̂o

)
dr

r
(4-28)

Isolating qDpj :

qDpj = ∆Pws(∆t)−∆Pos(∆t)

1
2πkjhj

rFj (tp)∫
rwj

(
qs(r,∆t)
λT (r,tp) −

qos(r,∆t)
λ̂o

)
dr
r

(4-29)

For any time step, in particular for t = tp, the definition of layer flow-rate
fraction ensures that:

n∑
j=1

qDj = 1
qinj

n∑
j=1

qj = 1 ⇒
n∑
j=1

qDpj = 1 (4-30)

Hence, from equations (4-29) and (4-30):

1 = (∆Pws(∆t)−∆Pos(∆t))
n∑
j=1


1

1
2πkjhj

rFj (tp)∫
rwj

(
qs(r,∆t)
λT (r,tp) −

qos(r,∆t)
λ̂o

)
dr
r

 (4-31)

Rearranging equation (4-31):

∆Pws(∆t) = ∆Pos(∆t) +


n∑
j=1

1

1
2πkjhj

rFj (tp)∫
rwj

(
qs(r,∆t)
λT (r,tp) −

qos(r,∆t)
λ̂o

)
dr
r



−1

︸ ︷︷ ︸
∆Pλs

(4-32)

As described in equation (4-32), pressure change in multilayer reservoirs
during falloff may be understood as the sum of the single-phase contribution
with one term related to the mobility differences, in an analogous way to
the injection period. Total and oil flow-rates are determined likewise the
single-layer case (equations (4-7) through (4-11) and subsection 4.1.1).

At this point, another fundamental hypothesis is made. It was assumed
that, in multilayer reservoirs, if the dimensionless parameters are calculated
using the reservoir’s total thickness and equivalent permeability, then the
source line approximation yields the sum of oil (or water) flow-rate in all
layers. Total thickness and equivalent permeability are defined as (4, 5):

h =
n∑
j=1

hj; keq = 1
h

n∑
j=1

kjhj0 (4-33)
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Thereby, dimensionless time and pressure are calculated as follows:

tD = λ̂fkeqt

φctr2
w

; PD = keqhλ̂f∆P
qinjB

(4-34)

Definitions for dimensionless radius and flow-rate remain the same as in
the single-layer case.

4.3
Pressure Response In Reservoirs With Formation Damage

Perforation and completion of the wellbore may create a region with
modified permeability (kskin) around the wellbore. This phenomena, known as
formation damage or skin effect, results in an additional pressure rise, or drop,
depending on the value kskin.

Usually, formation damage impairs fluid displacement; that is,
permeability in the damaged zone is smaller than reservoir permeability.
Nevertheless, sometimes drilling process creates microfractures around the
wellbore, stimulating the flow. In these cases, permeability in the damaged
zone is higher than reservoir permeability. Figure 4.2 shows an example of the
skin effect in two cases, one without formation damage and another where the
damaged zone permeability is smaller than reservoir permeability.

Figure 4.2: Pressure Response From Two Wellbores, One With And One
Without Formation Damage

Thus, accounting for the skin effect, pressure at the wellbore during an
injectivity test is computed as follows (16):

∆Pwf = ∆Pλ + ∆Po + ∆Pskin, (4-35)
The additional term ∆Pskin encompasses the effect of the damaged zone

in the single-phase oil flow. It is calculated by (3):
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∆Pskin = qinjBw

khλ̂o
S, (4-36)

where the term S denotes Hawkins’ skin factor. For single-layer reservoirs, it
is defined as (3):

S =
(

k

kskin
− 1

)
ln
(
rskin
rw

)
(4-37)

In multilayer reservoirs, the skin factor may be considered as the average
of the individual layer skin factors weighted by their respective flow-rates (15):

S =

n∑
j=1

qjSj

qinj
; Sj =

(
kj
kjskin

− 1
)
ln
(
rjskin
rw

)
(4-38)

The term ∆Pskin is computed using the endpoint oil mobility (equation
(4-36)) because the effects of formation damage in the two-phase oil flow are
accounted for inside the ∆Pλ term. The Aj coefficient used in the calculation
of ∆Pλ also must be adjusted owing to the presence of a damaged zone. The
correction depends on the position of the waterfront compared to the skin
radius. While the waterfront is within the damaged zone:

Aj(t) = Bw

2πkjskinhj

rFj (t)∫
rw

(
1
λT
− 1
λ̂o

)
dr

r
if rFj(t) < rjskin (4-39)

Otherwise, if the flooded region has overcome the damaged zone:

Aj(t) = Bw

2πkjhj


rFj (t)∫
rw

(
1
λT
− 1
λ̂o

)
dr

r
+
(

kj
kjskin

− 1
) rjskin∫

rw

(
1
λT
− 1
λ̂o

)
dr

r


(4-40)

Skin effect is much more noticeable during the injection period than
during falloff. That happens because the term ∆Pskin vanishes after the well
is shut. Nevertheless, the formation damage is present during falloff in term
∆Pλs:

∆Pλs(t) =


n∑
j=1

1

1
2πkjhj

rFj (t)∫
rw

(
qs
λT
− qos

λ̂o

)
dr
r

+
(

kj
kjskin

− 1
) rjskin∫

rw

(
qs
λT
− qos

λ̂o

)
dr
r





−1

(4-41)
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5
Results And Discussion

In order to evaluate the accuracy of the solution proposed in section 4.2,
a set of cases was run on the finite-difference based flow simulator IMEX.
As an input for the numerical simulation, a radial grid was built. Radial
discretization used increased the difference between two consecutive radial
steps as the distance from the wellbore increases. Thereby, the grid is more
refined in the region closest to the wellbore, that is, the region most affected
by its presence. Minimum time step was set at 10−7 h. Oil model used in
IMEX is blackoil. The analytical model depicted in sections 4.2 and 4.3 was
implemented in the open source software Scilab (28).

Pressure variation is expected to change in time as two semilog straight
lines, one related to the oil properties and another governed by the water
properties, separated by a transition period (19, 20).

So, in order to properly interpret the results of an injectivity test, one
must analyze not only the pressure data, but also the pressure derivative
with respect to the logarithm of time (from now on, referred to as pressure
derivative). Each semilog straight line is identified by a period when constant
pressure derivative, and reflects the properties of one distinct fluid (water or
oil). Pressure derivative was numerically calculated for each case as proposed
by Bourdet (13). Falloff pressure and pressure derivative data were plotted
against Agarwal’s equivalent time (9):

teq = tp∆t
tp + ∆t (5-1)

5.1
Input Parameters

For all cases, it was considered a 4 days (96 hours) injection period
followed by a 4 days falloff period, as in a typical injectivity test. The 4 days
injection time is short enough so that infinite radial regime is still acting (27).
Injection flow-rate was defined as 500m3/day (5.79x10−3 m3/s), also an usual
value for an injectivity test.

The hypothesis of negligible gravitational effects is valid for reservoirs
with total thickness up to 50 m. Thus, for all cases, total reservoir thickness
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Figure 5.1: Relative Permeability Curves

was set as 30 m, to ensure a safety margin with respect to the hypothesis
validity range. Rock compressibility was assumed to be 8.00x10-5 (kgf/cm2)-1.

Water viscosity and compressibility were defined, respectively, as 0.52
cP (5.2x10−4 Pa.s) and 1.14−4 (kgf/cm2)-1. Those are the usual values for
water properties at a typical reservoir temperature (50 to 60 oC). In all
multilayer cases, oil and relative permeability curves (displayed in figure 5.1)
were assumed to be the same for every layer.

Depending on the relative easiness of water and oil to move through
the reservoir, the two-phase flow may be labeled in two categories: favorable
or unfavorable to water displacement. One useful variable to understand
which fluid will move more easily is the endpoint mobility ratio M̂ . This
parameter is physically meaningless, and comes from a variable used in
reservoir engineering: the mobility ratio curve M , that consists of the ratio
between two corresponding points in water and oil mobility curves:

M(Sw) = λw(Sw)
λo(Sw) (5-2)

Ratio M̂ , then, is defined as the ratio between water mobility at residual
oil saturation and oil mobility at initial water saturation:

M̂ = λ̂w

λ̂o
(5-3)

Flows favorable to water displacement imply that M̂ > 1, while mobility
ratios lower than 1 denote the flow is unfavorable to water displacement.

For each reservoir configuration, a pair of values for oil viscosity was
chosen such that one would result in a flow favorable to water (µo = 5.10 cP)
and the other would present a mobility ratio lower than 1 (µo = 1.00 cP). In
all cases, oil compressibility was set as 4.04x10-5 (kgf/cm2)-1.

Table 5.1 shows the reservoir properties for each case.
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Table 5.1: Tested Cases

Case Layers k (mD) h (m) kskin (mD) rskin (m) M̂
A1 1 1000 30 - - 3.09
A2 1 1000 30 - - 0.61
B1 2 1000 (all) 15 (all) - - 3.09
B2 2 1000 (all) 15 (all) - - 0.61

1500
D1 3 500 10 (all) - - 3.09

1000
1500

D2 3 500 10 (all) - - 0.61
1000

F1 1 1000 30 500 0.5 3.09
F2 1 1000 30 500 0.5 0.61
H1 2 1000 (all) 15 (all) 500 (all) 0.5 (all) 3.09
H2 2 1000 (all) 15 (all) 500 (all) 0.5 (all) 0.61
J1 2 1000 (all) 15 (all) 500 and 100 0.5 (all) 3.09
J2 2 1000 (all) 15 (all) 500 and 100 0.5 (all) 0.61

500 0.5
L1 3 1000 (all) 10 (all) 500 0.5 3.09

- -
500 0.5

L2 3 1000 (all) 10 (all) 500 0.5 0.61
- -

1000 500
800 400

Q1 5 1200 6 (all) 600 0.5 (all) 3.09
900 450
1400 700
1000 500
800 400

Q2 5 1200 6 (all) 600 0.5 (all) 0.61
900 450
1400 700
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5.2
Cases Without Skin

Cases A to D consist of reservoirs with no formation damage and same
total thicknesses and equivalent permeabilities; that is, equal flow capacities.
Thus, all cases from this set with the same mobility ratio are expected to
present the same pressure response (14). Results for cases A to D are displayed
in figures 5.3 to 5.8.

Analytical solution and numerical data showed a good agreement for
all cases, even for those with mobility ratio lower than 1. When the flow is
unfavorable to water, numerical simulation faces convergence issues due to the
existence of shocks in the solution (25).

For all cases, it is noticeable that pressure derivative starts at a level
during early time and, after a transition period, stabilizes at a different level
at long time. This is a typical feature of a two-phase flow. During flow period,
initially the injected water volume is small. Then, pressure behavior is mostly
influenced by the oil properties. As the flooded region grows, water properties
progressively prevail (23).

During falloff, the logic is reverse. At early times, pressure is governed
by water properties. As the zero-rate pulse reaches the higher oil saturations
regions, pressure derivative starts to reflect the properties of this fluid (23).
For cases whose flow is favorable water, the highest pressure derivative level is
associated to oil. That happens because the reservoir is more resistant to oil
displacement than to water, which implies higher pressure variations during
the time period the derivative is more influenced by oil properties. Similarly,
for cases with M̂ < 1, the highest derivative level is related to water. It is also
important to keep in mind that, as defined in equation (4-1), pressure change
increases during falloff.

For cases with M̂ > 1, it is noticeable that the proposed formulation
implies in pressure derivative values lower than the corresponding water level
during falloff for teq < 0.001 h. The main reason for such fact is the usage of the
source line solution to determine total and oil flow-rates. This approximation
becomes less accurate in the region closest to the wellbore, resulting in flow-rate
values higher than expected.

Moreover, the choice of the approximation for total flow-rate is another
cause of divergences between numerical and analytical data during early falloff
times. Figure 5.2 compares the results obtained by the analytical model using
approximations 1 to 4 (equations (4-7) to (4-10)). Approximation 5 (equation
(4-11)) was not implemented, since its complexity-accuracy trade-off was not
considered computationally worthy. Reservoir and fluids settings are the same

DBD
PUC-Rio - Certificação Digital Nº 1621743/CA



Chapter 5. Results And Discussion 38

as case A1. and only falloff period is shown (injection period was omitted,
since it does not involve the mentioned flow-rate approximations). The pressure
derivative level associated to water properties was identified through the results
for the injection period.

Although approximation 1 (equation (4-7)) resulted in values lower than
expected at early falloff times, the overall derivative behavior is consistent with
a two-phase flow. On the other hand, approximations 2. 3 and 4 (equations
(4-8) to (4-10)) yielded a pressure derivative profile incompatible with the
physical reality, presenting an oscillatory region before the oil properties level
is reached.

Figure 5.2: Falloff Data For Case A1 Using Different Flow-rate Approximations

Such unexpected fact is possibly related to the development of the
formulation for the injection period. Equation (3-15) is achieved under the
hypothesis that the flooded zone is within the steady state region. Hence,
inside the waterfront, total flow-rate and oil flow-rate at irreducible water
saturation are numerically equal during the injection period. Perhaps the
results displayed in figure 5.2 reflect this assumption, suggesting that, during
falloff, total flow-rate should be estimated by the oil flow-rate.

Besides the flow-rate approximation, another possible explanation for
this lower derivative level is the accuracy of the Bessel functions used to
evaluate ∆Pos term. As depicted in appendices C and D, computation of ∆Pos
involves modified Bessel functions K0 and K1. For very small time arguments,
the imprecision associated to the computational calculation of those functions
becomes more relevant.
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Thus, initial falloff times are subject to an error that is inherent to
the flow-rate approximation and computational issues, but not related to the
hypothesis required to reach equation (4-32) Despite that, as the zero-rate
pulse propagates through the reservoir, analytical solution and numerical data
rapidly converge.

As expected, cases with the same mobility ratio presented almost
identical pressure responses, during both injection and falloff. This is consistent
with the fact that flow capacity is the same for cases A to D.

Cases A1 and A2 are two reference cases. They show the pressure
response in a single-layer reservoir, which is already known. Case A1 depicts
a flow that is favorable to water, while case A2 presents an endpoint mobility
ratio smaller than 1.

Figure 5.3: Pressure Response From Case A1 During Injection (Left) And
Falloff

Cases B1 and B2 stand for reservoirs with same flow capacity as the
reference cases, but with two layers, both of them with the same properties.
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Figure 5.4: Pressure Response From Case A2 During Injection (Left) And
Falloff

Figure 5.5: Pressure Response From Case B1 During Injection And Falloff

Figure 5.6: Pressure Response From Case B2 During Injection And Falloff
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Cases D1 and D2 show the pressure response in a reservoir without
formation damage and with different permeabilities in each layer. Thickness
is the same in every layers and the permeabilities were chosen such that the
reservoir equivalent permeability is the same as the reference case. Agreement
between the numerical simulator and the analytical model in cases D1 and D2
suggests that flow between layers through the wellbore is negligible, as foreseen
by the hypothesis made during the development of equation (4-32).

Figure 5.7: Pressure Response From Case D1 During Injection And Falloff

Figure 5.8: Pressure Response From Case D2 During Injection And Falloff

5.3
Cases With Skin

Results for cases F to Q are displayed in figures 5.9 to 5.18. Here again,
the results obtained through the analytical solution was close to the numerical
data, as observed in the graphs.
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For all cases, pressure derivative during flow period is characterized by an
abrupt decline at the transition period, followed by a quick rise before reaching
the water properties level. This is a characteristic feature of reservoirs with
formation damage (23). As the injected volume gets larger than the damaged
zone, waterfront transits from one region with lower permeability to another
with higher permeability (21), causing the mentioned sharp drop in pressure
derivative. Case J2 (fig. 5.14) is particularly interesting, because the existence
of two different damaged zones is very distinguishable in the pressure derivative
behavior.

Divergences between analytical solution and numerical simulated data
(e.g., flow period in cases with M̂ > 1) are related to the numerical calculation
procedure. Flow simulator assumes that water is injected by a zero-radius
wellbore, that is, well is considered to be a source line. Moreover, the pressure is
evaluated as the average pressure in each grid block. This implies the evaluated
pressure is influenced by the radial step in the simulation grid (8). Although
such factors are inherent to the numerical simulation, they are not an issue for
the analytical model.

Assuming the reservoir is in hydrostatic equilibrium after shut-in is a
quite strong hypothesis, specially for cases whose layer permeabilities and
damaged zones are very different. For these cases, during the first falloff
instants, flow between layers through the wellbore may occur, due to the
layer flow capacity difference (14, 10). Neglecting this effect is a possible
explanation for the deviations between analytical and numerical values of
pressure derivative at early falloff time (teq < 0.001 h).

With the purpose of studying the flow between layers during initial falloff
time, single-phase oil flows with the same reservoir configuration depicted
in table 5.1 were also run on IMEX and compared to the analytical model.
Results might be seen at figures 5.19 to 5.28. For all cases, it is noticeable
that numerical data derivative is not constant during early falloff times. Since
this behavior was detected even in cases whose layer properties were the same,
such fact was considered to be a reflection of the numerical calculation issues
associated to the radial grid. This is one factor that explains deviations between
the flow simulator and the analytical model.

Yet, the errors associated to the flow-rates computation are more relevant
in cases with formation damage. The higher flow-rate values estimated by
the source line approximation imply in slightly higher values of ∆Pλ when
total flow-rate is estimated through equation (4-7). In cases with M̂ > 1, the
pressure term associated to the mobility differences is negative. Hence, during
initial falloff times, this reflects in lower pressure derivative values. In cases
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whose flow is unfavorable to water, this error is hidden, since the ∆Pλ term is
already positive. As the zero-rate pulse propagates throughout the reservoir,
the hypothesis becomes valid and derivative behavior becomes similar to the
cases without skin.

Cases F1 and F2 are the reference cases for reservoirs with formation
damage. They show the pressure response in a single-layer reservoir and skin
factor S 6= 0.

Figure 5.9: Pressure Response From Case F1 During Injection And Falloff

Figure 5.10: Pressure Response From Case F2 During Injection And Falloff
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Cases H1 and H2 show the pressure response in a reservoir with two equal
layers, both with the same skin factor.

Figure 5.11: Pressure Response From Case H1 During Injection And Falloff

Figure 5.12: Pressure Response From Case H2 During Injection And Falloff
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The pressure behavior in a two-layer reservoir with two distinct damaged
regions is displayed in cases J1 and J2. As mentioned, in case J2. the pressure
derivative profile clearly points the waterfront passage through each damaged
zone.

Figure 5.13: Pressure Response From Case J1 During Injection And Falloff

Figure 5.14: Pressure Response From Case J2 During Injection And Falloff
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Cases L1 and L2 aim to assess the analytical model in reservoirs where
the skin effect is not present in every layer. They consist on a reservoir with
three equal layers, but only two of them present formation damage.

Figure 5.15: Pressure Response From Case L1 During Injection And Falloff

Figure 5.16: Pressure Response From Case L2 During Injection And Falloff
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Cases Q1 and Q2 are, perhaps, the two cases more related to the physical
reality. Here, reservoir presents five distinct layers, all of them with skin factor
S 6= 0. However, damaged zone properties were chosen such that skin factor
would be the same in every layer. Again, the hypothesis of negligible flow
between layers during falloff is tested. The agreement between analytical model
and numerical simulator suggest one more time that such hypothesis is valid.

Figure 5.17: Pressure Response From Case Q1 During Injection And Falloff

Figure 5.18: Pressure Response From Case Q2 During Injection And Falloff
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The pressure behavior for single-phase oil flow in cases F to Q are
displayed below in figures 5.19 to 5.28.

Figure 5.19: Single-Phase Oil Flow For Case F1 During Injection (Left) And
Falloff

Figure 5.20: Single-Phase Oil Flow For Case F2 During Injection (Left) And
Falloff
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Figure 5.21: Single-Phase Oil Flow For Case H1 During Injection And Falloff

Figure 5.22: Single-Phase Oil Flow For Case H2 During Injection And Falloff

Figure 5.23: Single-Phase Oil Flow For Case J1 During Injection And Falloff
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Figure 5.24: Single-Phase Oil Flow For Case J2 During Injection And Falloff

Figure 5.25: Single-Phase Oil Flow For Case L1 During Injection And Falloff

Figure 5.26: Single-Phase Oil Flow For Case L2 During Injection And Falloff
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Figure 5.27: Single-Phase Oil Flow For Case Q1 During Injection And Falloff

Figure 5.28: Single-Phase Oil Flow For Case Q2 During Injection And Falloff
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5.4
Determining The Reservoir Equivalent Permeability

As depicted in sections 5.2 and 5.3, the pressure derivative profile contains
two flatten regions seen, one defined by the oil mobility and another related to
water properties. Thus, two straight lines are observed in the semilog pressure
vs. time graph (?). The pressure term associated to the mobility differences
might be understood as an apparent skin factor. Hence, the reservoir equivalent
permeability may be estimated using the following equation, derived from the
single-phase formulation:

keq = 1.151αpqinj
hλ̂fmf

, (5-4)

where αp is the unit conversion constant. For a consistent set of units, αp = 1,
whereas for the set of Brazilian field units, αp = 19.03. The straight line
angular coefficient is denoted by mf , where the subscript f indicates the phase
associated to the straight line considered.

Therefore, falloff data were used to generate semilog graphs. Pressure
data were plotted against Horner time, defined as:

tH = tp + ∆t
∆t (5-5)

Semilog straight lines and their slopes were determined through the trend
line drawer available on Excel. Results for numerical and analytical data are
displayed in tables 5.2 and 5.3, respectively. Figures 5.29 to 5.32 show the
semilog graph for cases F1. F2. J1 and J2.

Equivalent permeability calculated according to equation (5-4) using
semilog graphs were very close to the input values for all cases, both for
water and oil properties, expect case J1. Due to the same causes discussed
in sections 5.2 and 5.3, analytical model is subject to noticeable error during
early falloff times (that means, higher Horner times). Hence, the formation of
the first semilog straight line may be impaired. Case J1 was more sensitive
to those factors, even though they were present in all cases. However, semilog
line relative to oil properties is well formed for all cases, and resulted in an
estimated equivalent permeability with error of about 1%.

Equivalent permeabilites calculated using numerical data implied in
excellent results when oil mobility was used. On the other hand, water
properties resulted in significant error, which may be explained by the flow
between layers, impairing the formation of the first semilog straight line.

It is interesting to observe that, in field tests, early falloff data usually
present too much noise. Thus, water semilog straight line is not detectable
and the reservoir equivalent permeability is estimated using the straight line
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relative to oil properties in a typical field test. That means both numerical
and analytical data allowed a quite accurate estimate for the equivalent
permeability when the most relevant straight line (the one associated to oil
mobility) is used.

Figure 5.29: Semilog Graph For Case F1 - Numerical Data On The Left And
Analytical Data On The Right

Figure 5.30: Semilog Graph For Case F2 - Numerical Data On The Left And
Analytical Data On The Right
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Figure 5.31: Semilog Graph For Case J1 - Numerical Data On The Left And
Analytical Data On The Right

Figure 5.32: Semilog Graph For Case J2 - Numerical Data On The Left And
Analytical Data On The Right
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Table 5.2: Equivalent Permeabilities Calculated Using IMEX Data
Case keq (mD) Phase mf Num. keq Num. (mD) Error (%)

Oil 1.508 993 -0.7A1 1000 Water 0.641 757 -24.3

A2 1000 Oil 0.298 985 -1.5
Water 0.498 974 -2.6
Oil 1.509 992 -0.8B1 1000 Water 0.641 757 -24.3

B2 1000 Oil 0.298 985 -1.5
Water 0.497 976 -2.4
Oil 1.512 990 -1.0D1 1000 Water 0.605 802 -19.8

D2 1000 Oil 0.298 985 -1.5
Water 0.498 974 -2.6
Oil 1.510 992 -0.8F1 1000 Water 0.589 823 -17.7

F2 1000 Oil 0.299 982 -1.8
Water 0.543 893 -10.7
Oil 1.511 991 -0.9H1 1000 Water 0.577 840 -16.0

H2 1000 Oil 0.299 982 -1.8
Water 0.558 869 -13.1
Oil 1.510 992 -0.8J1 1000 Water 0.837 579 -42.1

J2 1000 Oil 0.299 982 -1.8
Water 0.859 565 -43.5
Oil 1.510 992 -0.8L1 1000 Water 0.551 880 -12.0

L2 1000 Oil 0.299 982 -1.8
Water 0.501 968 -3.2
Oil 1.507 994 -0.6Q1 1060 Water 0.543 893 -15.7

Q2 1060 Oil 0.282 1041 -1.8
Water 0.540 898 -15.3
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Table 5.3: Equivalent Permeabilities Computed Using Analytical Data
Case keq (mD) Phase mf An. keq An. (mD) Error (%)

Oil 1.482 1010 1.0A1 1000 Water 0.460 1054 5.4

A2 1000 Oil 0.295 995 -0.5
Water 0.500 970 -3.0
Oil 1.482 1010 1.0B1 1000 Water 0.460 1054 5.4

B2 1000 Oil 0.295 995 -0.5
Water 0.500 970 -3.0
Oil 1.483 1010 1.0D1 1000 Water 0.458 1059 5.9

D2 1000 Oil 0.295 995 -0.5
Water 0.504 962 -3.8
Oil 1.482 1010 1.0F1 1000 Water 0.443 1095 9.5

F2 1000 Oil 0.295 995 -0.5
Water 0.502 966 -3.4
Oil 1.482 1010 1.0H1 1000 Water 0.443 1095 9.5

H2 1000 Oil 0.295 995 -0.5
Water 0.502 966 -3.4
Oil 1.486 1008 0.8J1 1000 Water 0.036 13471 1247.1

J2 1000 Oil 0.295 995 -0.5
Water 0.530 915 -8.5
Oil 1.483 1010 1.0L1 1000 Water 0.477 1017 1.7

L2 1000 Oil 0.295 995 -0.5
Water 0.501 968 -3.2
Oil 1.399 1070 1.0Q1 1060 Water 0.425 1141 7.6

Q2 1060 Oil 0.278 1056 -0.4
Water 0.475 1021 -3.7
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6
Conclusions And Suggestions For Future Works

The analytical solution for the injection period in multilayer reservoirs
was implemented as suggested by Barreto et al. (25). Their model reduces to
the formulation proposed by Banerjee et al. (20) and Peres et al. (22) when
applied to single-layer reservoirs. Pressure behavior during falloff in single-layer
reservoirs was computed according to the solution developed by Peres et al.
(24). Based on their formulation for falloff period in single-layer reservoirs, an
expression for multilayer reservoirs was developed.

The suggested model was applied on a series of cases, with distinct
number of layers, layer permeabilities, formation damage permeabilities and
radii. For all cases, comparison between analytical solution and numerical
simulation showed a close agreement.

The reservoir equivalent permeability estimated using falloff data and oil
properties was very close to the real value for all simulated cases.

Such results verified that the proposed formulation was accurate to
describe falloff pressure behavior in multilayer systems.

The analytical model developed may be used as basis for further works.
One natural step is to evaluate the accuracy of the suggested falloff formulation
in multilayer reservoirs with different outer boundary conditions. The study of
multilayer reservoirs with more than one injector wellbore would also benefit
from this work.

An extension of the analytical model to horizontal wells would attract
significant industrial interest. Two other reservoir management applications
consist on using the proposed formulation for injection tests with non-constant
injection flow-rate and attempting to estimate individual layer skin factor
through the analytical model presented. Finally, the analytical model suggested
may be helpful in the study of reservoirs with crossflow.
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A
Determining The Waterfront Shape

In this appendix, will be presented the theory used to determine
waterfront shape. First, the relation between fractional flow and mobility
profile will be shown. Then, this relation will be applied along with
Buckley-Leverett theory in order to achieve a means of calculating waterfront
saturation profile. Last, a method to adjust the calculated waterfront profile
will be developed.

A.1
Fractional Flow

Whenever a two-phase flow occurs, mass conservation ensures that total
flow-rate is defined as the sum of the flow-rates from each phase:

q = q1 + q2 (A-1)
If flow happens through a porous media, Darcy’s law is applicable in a

inclined control volume, as in figure A.1:

qf = −Akf
µf

∂(Pf + ρfgsin(α))
∂x

(A-2)

where the subscript f denotes the phase considered.

Figure A.1: Control Volume

Thus:

qf = −Akf
µf

(
∂Pf
∂x

+ ∂ρfgsin(α)
∂x

)
(A-3)
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Both the gravitational constant g and angle α do not depend on the
position. By hypothesis, fluids are slightly compressible. That means the
density derivative is much smaller than the pressure derivative and, thereby,
may be neglected:

qf ≈ −
Akf
µf

∂Pf
∂x

(A-4)

Capillary pressure consists on the difference between each phase’s
pressure. As it was assumed to be neglegible, a relation between the pressure
derivatives from each phase is given by:

PC = P1 − P2 ≈ 0 ⇒ ∂P1

∂x
− ∂P2

∂x
= 0 (A-5)

Hence, by equations (A-4) and (A-5):

q1µ1

Ak1
− q2µ2

Ak2
= 0 (A-6)

Multiplying both sides by k1A/µ1q:

q1

q︸︷︷︸
f1

− q2

q︸︷︷︸
f2

µ2

k2

k1

µ1
= 0 (A-7)

The flow-rates ratios on the equation above represent, respectively, the
fractional flow for phases 1 and 2, i.e., the percentage of each phase flow in
the total flow-rate inside a control volume. Thus, fractional flow for phase 1 is
defined as:

f1 = f2
µ2

k2

k1

µ1
(A-8)

And analogously for phase 2. But, by definition, the mobility of a phase
is given by kf/µf . Therefore:

f1 = f2
λ1

λ2
(A-9)

Since f1 + f2 = 1:

f1 = (1− f1)λ1

λ2
(A-10)

Multiplying both sides by λ2:

f1λ2 + f1λ1 = λ1 (A-11)
Thus:

f1 = λ1

λ1 + λ2
= λ1

λt
(A-12)

And equation (A-12) shows that the fractional flow depends only on the
mobility profile.
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A.2
Buckley-Leverett Theory For Cylindrical Geometry

Buckley-Leverett theory is a conservation-based model used to analyze
two-phase flow in a porous media. Therefore, this theory is useful to forecast
the waterfront radius after a certain period of time, i.e., how far the injected
water has swept the reservoir.

Model assumes that both fluids are immiscible and incompressible, and
that flow is horizontal and unidimensional (or radial). Also, gravitational and
capillary forces are neglected.

Figure A.2: Cylindrical Control Volume

Starting from a cylindrical control volume concentric with the wellbore
as depicted in figure A.2, one may write the following mass balance:

Mass Inlet - Mass Outlet = Mass Accumulation (A-13)
For a given instant of time, water mass inlet and outlet are defined as

follows:

Mass Inlet = (vwρwA)r∆t = (vwρw2πrh)r∆t (A-14)

Mass Outlet = (vwρwA)r+∆r∆t = (vwρw2πrh)r+∆r∆t (A-15)

where vw, ρw and A are, respectively, water velocity, water density and the
cross-sectional area.

Subtracting equation (A-15) from equation (A-14):

Mass Inlet - Mass Outlet = ρw∆t2πh(rvw|r − rvw|r+∆r) (A-16)

Mass in two consecutive time steps is evaluated as follows:

Mass at a given instant of time = (∆rAφSwρw)t = (∆r2πhφSwρw)t (A-17)
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Mass at the next instant of time = (∆rAφSwρw)t+∆t = (∆r2πhφSwρw)t+∆t

(A-18)
where φ stands for the rock porosity and Sw is the water saturation for given
time and radius.

Mass accumulation is calculated by the mass derivative with respect to
time:

Mass accumulation = ∆r2πhφρw(rSw|t+∆t − rSw|t) (A-19)
Applying equations (A-16) and (A-19) in the mass balance (A-13):

ρw∆t2πh(rVw|r − rVw|r+∆r) = 2πhρw∆rφr(Sw|t+∆t − Sw|t) (A-20)

(rVw|r)− (rVw|r+∆r)
r∆r = φ

(Sw|t+∆t)− (Sw|t)
∆t (A-21)

At the limit when ∆r and ∆t tend to zero, equation (A-21) may be
rewritten as:

⇒ −1
r

∂

∂r
(rVw) = φ

∂Sw
∂t

(A-22)
The deduction for the oil-phase is analogous.
For each position and each timestep, the process is assumed to be

stationary. Under such circumstances, saturation derivative with respect to
radius is related to saturation derivative with respect to time by the following
expression (1):

∂Sw
∂t

= −∂Sw
∂t

∂t

∂r
(A-23)

Combining equations (A-22) and (A-23):

1
r

∂

∂r
(rVw) = φ

∂Sw
∂r

∂r

∂t
(A-24)

Multiplying the equation above by 2πh:

1
r

∂

∂r
qw = φ2πh∂Sw

∂r

∂r

∂t
(A-25)

It is now useful to write the water flow-rate in terms of water fractional
flow and total injected flow-rate. As shown in appendix A.1, water fractional
flow is given by:

fw =
kw
µw

kw
µw

+ ko
µo

= λw
λt

(A-26)

If the relative permeability curve is known, it is possible to build a
fractional flow curve as a function of water saturation. Thereby, water flow
in equation (A-25) might be evaluated as:
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qw = fwq (A-27)
Thus, the water flow derivative (A-25) might be calculated as a function

of water fractional flow instead of water saturation:

1
r

∂

∂r
(fwq) = q

r

∂

∂r
fw = q

r

∂fw
∂Sw︸ ︷︷ ︸
f ′w

∂Sw
∂r

(A-28)

Combining equations (A-25) and (A-28):

q

r
f ′w = φ2πh∂r

∂t
⇒ qf ′w

2πhφ∂t = r∂r (A-29)

Integrating the two sides of the equation:

qf ′w
2πhφt =

rF∫
rw

r∂r = r2
F − r2

w

2 (A-30)

Therefore, waterfront radius for cylindrical geometry in a given time t is
computed as:

rF (t) =
√
qf ′wt

πhφ
+ r2

w (A-31)

A.3
Welge Method To Adjust The Waterfront Saturation Profile

As equation (A-31) shows, waterfront radius calculated according to
Buckley-Leverett theory depends on the fractional flow derivative and, hence,
on the relative permeability curves (see figure A.3). Thus, water-oil interface
along the waterfront is shaped by relative permeability data.

Figure A.3: Mobilities Profiles And Its Corresponding Fractional Flow Curve

Since fractional flow relies only on water-oil interaction, the derivative
curve may assume a wide range of shapes. This may lead to a waterfront
inconsistent with the physical nature of the problem, as gravity implies that
the higher density fluid present higher saturation at the bottom of the reservoir.
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Such situation happens whenever the two-phase flow is more favorable to water
than to oil.

Figure A.4: Fractional Flow Curve And Its Corresponding Waterfront Profile

In figure A.4, the fractional derivative shape is typical for mobility ratio
higher than 1, while figure A.5 depicts flow unfavorable to water. However, the
behavior depicted in figure A.5 is inconsistent with the physical reality. Since
permeability is assumed to be radially constant, it is not possible that a point
further from the wellbore presents higher water saturation than one closer.
Besides, saturation profile in figure A.5 implies that two different saturations
might occur at the same radius, which is clearly impossible.

Figure A.5: Fractional Flow Curve And Resulting Inconsistent Waterfront
Profile

Thus, whenever the fractional flow data present an inflection point, an
adjustment is required, so that the estimated waterfront makes physical sense.
This correction is achieved through Welge method for waterfront calculation.

This technique aims to build a straight line that starts at the connate
water saturation and is tangent to the fractional flow curve (17). For all
saturations bellow this tangency point is (denoted by SwF ), fractional flow
derivative is assumed to be constant and equal to f ′w(SwF ).

The tangency point is determined by taking the highest saturation whose
corresponding derivative enables the construction of a straight line that,
simultaneously, is tangent to the fractional flow curve, passes through the
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reservoir initial water saturation and results in higher fractional flow values
than the original curve.

Figure A.6: Adjusted Fractional Flow Curve And Waterfront

Figure A.6 shows the adjusted fractional flow curve And Its
Corresponding waterfront. Definition of SwF implies that areas A and B

must be equal. This condition is required to ensure mass conservation along
the adjusted waterfront (26). Thus, waterfront adjusted by Welge method is
capable of describing two-phase flow in a consistent way.
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B
Pressure Response In Single-Layer Reservoirs Under
Single-Phase Flow

Single-phase oil flow inside a reservoir is well known (4, 5, 7, 10, 11). The
following formulation was originally developed for production tests, during
which oil is removed from the reservoir, causing a pressure drop. However,
for a matter of convenience, it will be considered an injectivity test, assuming
the injection fluid is the same oil existent inside the reservoir. All equations
remain essentially the same, only difference is the flow-rate sign. If it is positive,
then oil is removed from the reservoir; whereas negative flow-rates stand for
injectivity tests.

The pressure change caused by such flow is depicted by a partial
differential equation problem, given appropriate initial and boundary
conditions. The same assumptions over the reservoir model made in chapter 3
are also valid. For a single-phase oil flow inside a single-layer reservoir under
infinite radial flow, the mathematical formulation of the problem is given by
(11):

Partial Differential Equation:

1
r

∂

∂r

(
r
∂∆P
∂r

)
= 1
η

∂∆P
∂t

, (B-1)

where the term ∆P stands for the difference between initial and current
pressure and the ηj parameter represents the reservoir hydraulic diffusivity,
defined as (10):

ηj = kj
φjµct

(B-2)

where φj denotes the porosity in layer j and ct is the total compressibility.
Equation (B-1) describes how pressure inside any single-layer reservoir

behaves after a given time interval. It is natural to infer that reservoirs
presenting distinct initial conditions will present distinct pressure responses.
Thus, a starting condition must be properly prescribed. For the reservoir model
considered, the initial condition follows from the hypothesis that the reservoir
is in equilibrium at the instant t = 0:

Initial Condition:
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∆P (r, t = 0) = 0 (B-3)
To ensure uniqueness of the solution, it is also imperative to understand

how the flow develops at the wellbore and at the reservoir boundaries. Outer
boundary condition is a consequence of the reservoir’s infinite extension. At a
sufficiently large radius, wellbore presence is not felt by the reservoir. Hence,
for any time, pressure at such radius is equal to the initial pressure. Thus:

Outer Boundary Condition:

lim
r→∞

∆P (r, t) = 0 (B-4)
Inner boundary condition derives from Darcy’s law.
Inner Boundary Condition:

q = 2πkh
µ

(
r
∂∆P
∂r

)
r=rw

(B-5)

Now, the problem depicted by equations (B-1), (B-3), (B-4) and (B-5)
is well posed, and uniqueness is assured. One means for obtaining the
analytical solution for the injection period is through the Laplace transform.
Transforming equation (B-1) and using the initial condition (B-3), one gets:

1
r

∂

∂r

(
r
∂∆P
∂r

)
= 1
η
u∆P (B-6)

where u stands for the Laplace variable.
Applying the product rule at the partial derivative, equation (B-6) might

be rewritten as:

∂2∆P
∂r2 + 1

r

∂∆P
∂r

= u

η
∆P (B-7)

Rearranging equation (B-7) in a convenient manner:

∂2∆P

∂
(
r
√
u/η

)2 + 1
r
√
u/η

∂∆P
∂
(
r
√
u/η

) −∆P = 0 (B-8)

Equation (B-8) is similar to the following equation:

∂

∂r

(
∂2y

∂z2

)
+ 1
z

(
∂y

∂z

)
−
(

1− v2

z2

)
= 0, (B-9)

that has as general solution (6):

y = aIv(z) + bKv(z) (B-10)
where a and b are constants; Iv is modified Bessel function of first kind and
order v; and Kv is modified Bessel function of second kind and order v.

Thus, equation (B-8) has as general solution:

∆P = aI0

(
r

√
u

η

)
+ bK0

(
r

√
u

η

)
(B-11)
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In order to determine the constants, the Laplace transform must be
applied to the boundary conditions. Transforming the OBC (B-4) to Laplace
domain:

lim
r→∞

∆P (r, t) = lim
r→∞

[
aI0

(
r

√
u

η

)
+ bK0

(
r

√
u

η

)]
(B-12)

Since the Bessel functions are sufficiently regular, the limit of sum is
equal to the sum of limits:

lim
r→∞

∆Pj(r, t) = a lim
r→∞

I0

(
r

√
u

ηj

)
+ b lim

r→∞
K0

(
r

√
u

ηj

)
(B-13)

Owing to the limit of the Bessel function (6), it is easy to notice that
a = 0. Constant b is computed by transforming the IBC (B-5):

q

u
= −2πkhr

µ

(
∂∆P
∂r

)
rw

= −2πkhr
µ

∂
(
bK0

(
r
√

u
η

))
∂r

(B-14)

Using the property of the Bessel function derivative (6):

q

u
= 2πkhrw

µ
b

√
u

η
K1

(
rw

√
u

η

)
(B-15)

Thereby, the constant b is given by:

b = qµ

2πukhrw
√
u/η

1
K1

(
rw
√
u/η

) (B-16)

Thus, the pressure in Laplace domain is calculated by the following
expression:

∆P (r, t) = bK0

(
r

√
u

η

)
= qµ

2πukhrw
√
u/η

K0
(
rw
√
u/η

)
K1

(
rw
√
u/η

) (B-17)

Expression (B-17) may be easily converted to the real field through the
Stehfest algorithm (2).
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C
Pressure Response In Multilayer Reservoirs Under
Single-Phase Flow

Formulation for multilayer reservoirs is an extension of the one presented
in the previous section. Here once again, the flow-rate sign will point whether
an injectivity or production test is considered.

Now, the partial differential equation describes pressure change in an
arbitrary layer j (11):

Partial Differential Equation:

1
r

∂

∂r

(
r
∂∆Pj
∂r

)
= 1
ηj

∂∆Pj
∂t

(C-1)

where the term ∆Pj stands for the difference between initial and current
pressure in layer j and the ηj parameter represents the hydraulic diffusivity in
layer j, defined as (10):

ηj = kj
φjµct

(C-2)

Initial and boundary conditions are also adapted from the single-layer
case (11):

Initial Condition:

∆Pj(r, t = 0) = 0 (C-3)
Outer Boundary Condition:

lim
r→∞

∆Pj(r, t) = 0 (C-4)
Inner Boundary Condition:

qj = 2π
µ
kjhj

(
r
∂∆P
∂r

)
r=rw

(C-5)

The analytical solution for the injection period is obtained through the
Laplace transform. Transformation of equation (C-1) yields (using the initial
condition (C-3)):

1
r

∂

∂r

(
r
∂∆Pj
∂r

)
= 1
ηj
u∆Pj (C-6)

Applying the product rule at the partial derivative, equation (C-6) might
be rewritten as:
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∂2∆Pj
∂r2 + 1

r

∂∆Pj
∂r

= u

ηj
∆Pj (C-7)

Rearranging equation (C-7) in a convenient manner:

∂2∆Pj
∂
(
r
√
u/ηj

)2 + 1
r
√
u/ηj

∂∆Pj
∂
(
r
√
u/ηj

) −∆Pj = 0 (C-8)

Thus, equation (C-8) has as general solution (6):

∆Pj = aI0

(
r

√
u

ηj

)
+ bK0

(
r

√
u

ηj

)
(C-9)

The constants a and b are computed by applying the Laplace transform
to the boundary conditions. Transforming the OBC to Laplace domain:

lim
r→∞

∆Pj(r, t) = lim
r→∞

[
aI0

(
r

√
u

ηj

)
+ bK0

(
r

√
u

ηj

)]
(C-10)

Writing the limit of sum as the sum of limits:

lim
r→∞

∆Pj(r, t) = a lim
r→∞

I0

(
r

√
u

ηj

)
+ b lim

r→∞
K0

(
r

√
u

ηj

)
(C-11)

The limit of Bessel functions ensures that a = 0 once again (6).
Transforming the IBC:

qj
u

= 2πkjhjrw
µ

b

√
u

ηj
K1

(
rw

√
u

ηj

)
(C-12)

Thereby, it is possible to compute constant b:

b = qjµ

2πukjhjrw
√
u/ηj

1
K1

(
rw
√
u/ηj

) (C-13)

Thus, the pressure in layer j is calculated in Laplace domain by the
following expression:

∆Pj(r, t) = bK0

(
r

√
u

ηj

)
= qjµ

2πukjhjrw
√
u/ηj

K0
(
rw
√
u/ηj

)
K1

(
rw
√
u/ηj

) (C-14)

Isolating the flow-rate in layer j from equation (C-14):

qj = ∆Pj(r, t)
2πukjhjrw

µ

√
u

ηj

K1
(
rw
√
u/ηj

)
K0

(
rw
√
u/ηj

) (C-15)

Total injection flow-rate is evaluated by summing the flow-rates in every
layer:

qinj =
n∑
j=1

qj =
n∑
j=1

∆Pj(r, t)
2πukjhjrw

µ

√
u

ηj

K1
(
rw
√
u/ηj

)
K0

(
rw
√
u/ηj

) (C-16)
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However, by hypothesis, pressure rise is the same for all layers, which
implies that:

∆P1 = ∆P2 = ... = ∆Pn = ∆P (C-17)
Therefore, equation (C-16) might be rewritten as:

∆P = 1
n∑
j=1

2πukjhjrw
qinjµ

√
u
ηj

K1

(
rw
√
u/ηj

)
K0

(
rw
√
u/ηj

) (C-18)

Rearranging equation (C-18):

∆P = qinjµ

2πrw
n∑
j=1

ukjhj
√

u
ηj

K1

(
rw
√
u/ηj

)
K0

(
rw
√
u/ηj

) (C-19)

Finally, Stehfest algorithm is once again used to convert expression
(C-19) to the real field (2). It is also clear that, whenever equation (C-19)
is applied to single-layer reservoirs, it reduces to (B-17), as expected.
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D
Superposition Principle

The linearity of partial differential equation (B-1) enables the usage of
the superposition principle to describe flow-rate history of a single-phase flow.
That is, if f and g are solutions of the PDE, then Af+Bg is also a solution for
the same PDE (A and B are constants). Thus, the conventional flow history
during a single-phase flow may be depicted by the superposition principle as
well. After shut-in, flow-rate becomes zero.

This is equivalent to a test with two wells at the same point of the
reservoir (10, 24): one that starts injecting fluid at the initial time, and the
other with equal flow-rate, but with opposite sign, that starts at the instant
the well is shut (tp). Figure D.1 shows how the flow-rate history is represented
according to the superposition principle.

Figure D.1: Flow History And Superposition Equivalent Scheme

Therefore, the calculation of well bottom hole pressure is made essentially
by computing the contribution from each well:

∆Pws(tp + ∆t) = ∆Pwf (tp + ∆t) + ∆Pwf (∆t), (D-1)
and each term is evaluated as shown in appendixes C and B. Thus, from
equations (C-19) and (D-1), pressure measured at the wellbore at any instant
after the well is shut is computed as:
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∆Pws = L−1


qinjµ

2πrw


1

n∑
j=1

ukjhj
√

u
ηj

K1

(
rw
√

u
ηj

)
K0

(
rw
√

u
ηj

)
− 1

n∑
j=1

u∗kjhj
√

u∗

ηj

K1

(
rw

√
u∗
ηj

)
K0

(
rw

√
u∗
ηj

)




,

(D-2)
where u and u∗ are the Laplace variables associated to each flow-rate displayed
in figure D.1. The ratio between u and u∗ is given by:

u∗ = u
tp + ∆t

∆t (D-3)
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